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ABSTRACT

This paper describes an analysis of system-detected software errors on

the MVS operating system at the Center for Information Technology (CIT),
at Stanford University. The analysis determines the most common error

categories and relates them to the program in execution at the time of
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1. INTRODUCTION

The design of reliable and fault tolerant software systems is one of the

most important issues facing computer designers today. Computer soft-

ware cost and reliability are the major problem areas affecting sophis-

ticated systems. An important reason for this is that the processes

affecting a software system are highly complex and interactive. Theo-

retical models can only deal with a limited range of problems. It is,

most often problems outside the range of these models that cause the

most severe malfunctions. Thus, there is no better substitute, at this

stage, for results based on actual measurements and experimentation

[Curtis 80]. Such studies however are few and far between [Denning 80].

This paper presents results of one such analysis conducted on the MVS

operating system on the IBM 3081 at the Center for Information Technol-

ogy (CIT) at Stanford University. CIT is the main campus computation

facility. It is used for production programs (payrolls and administra-

tion), student and research projects, and for general purpose computing.

The installation consists of two IBM 3081 processors uhich run the MVS

operating system. The two processors are loosely coupled, e.g., they

have distinct control programs and different I/O configurations. On a

typical day, the two systems support around 500 users and run approxi-

mately 4000 batch jobs.

The general objective of this study was to determine the causes of

software errors (recoverable and non-recoverable) in a fully operational

production environment. We wished to understand the software problems

and attributes that affect the correct handling of adverse system condi-

tions. The data on error detection and recovery is automatically logged

7 '
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by the operating system. Thus it was possible to investigate not only

the general question of software reliability but also examine the auto-

matic system recovery features. In particular the following points were

addressed:

1. What are the most common types of software errors in a fully

operational environment and their relative frequencies?

2. What is the impact of the errors on the system?

3. How robust is the system in recovering from different types of

errors?

4. What inferences can be drawn from the analysis in relation to the

system fault tolerance and recovery features?

The approach adopted was to start with a substantial quantity of high I
quality data on all software errors, (recoverable and non-recoverable).

An error collection mechanism which selected and filtered the raw data

so as to cluster records referring to the same error. was developed. An

analysis of the clustered data was then performed to determine the most

common types of system errors and their effect on system integrity.

Finally, the system fault tolerance and recovery features were evaluated

by measuring their ability to successfully recover from system problems

of various levels of severity.

In our analysis we differentiate between the terms "error" and "fail-

ure". A failure is a software "error" which causes the termination of

the system (i.e.. a system failure). Thus an error, in general, may or

may not result in a failure.

Before describing this work in detail, an overview of related

research in this area is presented.

IL5
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2. RELATED RESEARCH AND MOTIVATION

Designing hardware systems that tolerate faults is relatively well

understood, at least from a theoretical viewpoint. However, the problem

of software fault tolerance has yet to be well investigated [Hecht

80a,b]. A reason for this is that neither the error generation process

nor the prediction problem are easy to comprehend, although the SIFT

studies have been an important contribution [Iensley 78], [Melliar-Smith

81).

The term "software reliability model" is usually taken to mean mathe-

matical models for assessing the reliability of software (in terms of

statistical parameters such as Mean Time Between Failures) during the

development, debugging or testing phases. A few of these models have

also been applied in follow-up operational phases. Several competing

models have appeared in the literature [Musa 19803, and a number of

authors have attempted to analyse their suitability. An appreciation of

the extent and nature of this discussion can be obtained from [Goel 80].

The main difficulty with these approaches is that, although each model

appears to be valid within its own assumptions, there is insufficient

experimental evidence available for its large scale validity.

Research most closely related to the present study is in the area of

analysis of errors and their causes in large software systems. [Endres

75) discusses and oategorises errors and error frequencies during the

internal testing phase of the IBM DOS/VS system. In [Thayer 78] data

collected from four large software development projects is analysed.

[Hamilton 78] applies the well known execution time model [Musa 80] to

measure the operational reliability of computer center software, and

4 ____________________t_
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WGass 80] examines the occurrence of persistent bugs and their causes

in operational software. Another useful study is [Maxwell 78), whirli

tabulates and examines error statistics on software.

None of these studies tries to relate system reliability or the error

frequencies to the usage environment of the software itself in a system-

atic manner. Results based on such measurements are essential in order

to evaluate the system fault tolerance and automatic recovery features.

The argument for adopting a particular approach is more convincing if

backed by experiments demonstrating its usefulness.

In an early study of failures at the SLAC (Stanford Linear Accelera-

tor Center) computation facility, [Butner 80) and [Tyer 82a] found a

strong correlation between the occurrence of failures and the level of

system activity at the time of failure. A more detailed and accurate

analysis of failures on a VII/370 system (in service at SLAC since Febru-

ary 1981) confirmed this relationship [Rossetti 82).

The operational phase of mature software is somewhat different from

the development, debugging, and testing phases. A typical situation is

one where frequent changes and updates are installed either by the

installation programmers or by the vendor. often the vendor will

install a change. to fix an error found at some other installation,

without any notification to the installation management. in a sense the

system being measured represents an aggregate of all such systems main-

tained by the vendor.

It is clear that more experimental studies on operational software

are necessary before a sound analytical basis can be developed for soft-

ware reliability evaluation. The MVS system on the IBM 3081 at CIT pro-
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vided an ideal opportunity in this regard. The operating system auto-

matically collects information on error detection and correction. The

state of the machine at the time of the error is also recorded. The

following section provides a overview of the error handling and collec-

tion mechanism on MYS.

3. SOFTWARE ERROR MEASUREMENT: HOW IT WORKS

This study concentrates on all software errors detected by the operating

system. In addition to error detection, the operating system also pro-

vides for error correction through either retry, or- a job or task termi-

nation. There is a close relation between the hardware and the operat-

ing system in this area. An overview of software error detection and

recovery appears in [IBM 80]; detailed descriptions may be found in [IBM

811 and [IBMI 791.

There are four different types of software problems for which a soft-

ware record is generated:

1. Program check - indicates a hardware detected software error.

2. Invalid supervisor call - indicates a supervisor service request

issued by an unauthorized program.

3. Program abnormal termination (ABEND) - indicates an abnormal ter-

mination (by the system or by the program itself) of the execut-

ing program.

4. Restart kjU depressed - indicates an operator detected anomaly

and is caused by a restart operation.

These events cause the normal execution of the program to be inter-

rupted, and the control to be transfered to a system control program
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called the Recovery Termination Manager (RTM). Specifically, the RTM

supervises the error handling process either by giving control to a

recovery routine or by itself providing for error recovery in the

absence of a recovery routine. In either case recovery can be in the

form of a job or task termination or a retry. A task is a module or a

sub-program of a job.

There are two types of recovery routines:

1. Functional Recovery Routines (FRR): These are provided in M'VS

for critical system programs.

2. Task Recovery Routines: These may be written for critical user

and subsystem programs using an MVS facility called Extended Sub-

task Abend Exit (ESTAE).

At the end of the recovery process, the RTM invokes the error recording

routines to generate a software record of the incident. The data set

containing this information is called SYSI.LOGREC. Generally, FRR rou-

tines will write a record to LOGREC while ESTAE routines will generate a

record only if the programmer has specifically provided for this in the

routine.

A standard header on the software record consists of a time-stamp,

the model and serial number of the CPU where the error occurred, and the

name of the jobstep involved. In addition, the record contains data on

the type of detection, the event causing the detection and the detailed

symptom of the error. Data describing the steps in the recovery process

is also provided. A sample of the error data is given in Fig. 1.

At CIT. software records have been systematically generated and

archived since March 1982. The next section describes the processing

performed on the raw data to make it usable for analysis.
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C0s ?Z4405ThP .100 STYPE CPU C04.NOOEL EVENT SYM4PTOM1 OCC04AI RESULT .IOBTCOII

319 ISAP82-14144S CS7fir002 10433430 020462 308t P306244K £00000 ICCVXPOO C01411(01 NO0

3Z0 ISAP182114413'32 C576P302 V.4us44!4r 20460 3084 P30604 £00000 ICCVXPOO CONTICOI N40
321 ISA0902114n1411Z C04.00432 404C~ 2346Z 3061 P002204K £00000 ECVKFRR C044TTC01 NO0

3Z2 ISAPRO2.4414S3 204L20132 HI:.3044C0 22216. 38 PR00211K A00980 2CCVXFRR CO4ITTCOII NO
323 ISAFPZ'4..4.3 COLOP132 HI3S1400 12046t 3051 P300214K £00000 IECV30000 CONTTCII No

32'. ISAPPSZ 14l.1413 2O41T 4*4CSWEOO Z0062 3004 P300244K £00000 CO0ITTCOI NO

3,5 ISAPr82 14443 INIT HIIDSWEAR 22062 3001 P006244K £00000 C014TTCORM No

326 ISAPPS02 444, PO2SS "llVS'A3!R 24162 3034 P32324K £Q0000 UCVXFRO CO44TTCOII "a

327 45P8:4s' M74SOOJCL 144423440 21062 30011 P000204K 021000 CONTTCOI No

32£ i000082:14:4,425 EWA3X 44113Si4Er0 23462 3004 P306204K £O000 2(232000 CONTTEI N40

329 15. PP!2!141432 4133JCL. K1ER4231 2:0461* 3031 P302204K OC1000 [301465s RETRY NO

330 15AP952'. 4:32 4 3TRJCL U.13p4C00 21016Z 3001 P000244K 021000 IEES0665 CONTTEOI NO0

331 ISAPR821t-414:34 MT33J21. ,4OjO3Ir :0162 3001 PR0021lK 024000 RET0Y No0

332 15APR82 l'4'.'S6 *03 ?t3W000IR 00162 3001 PRO0C1IK £00000 'ECVXFOO CO14TTCO4 No0

3i3 lsk?002~t4zi5~ll 0$AZTU10 4441304410 *:0l., 3001 P00004K A00030 ICCVXFOO CCIATT(0I NO0

33.. l!30008214IS14l HIT2 M'W33:1303 z22342 3081 PROG211K A00000 C01433(01 N40

330 ISAPOO2':i4.S'21 Do$ 1444014400 .0462 3004 P30004 A00000 12232130 COI.41(01 N40

336 ISAPR82:W1511~7 43T3JC4 14443344(0 W0it 3084 P30604K 024060 ZIES066S CONT4C041 No

337 I5APO&Z,14,15;27 4STRJCL 44421044(7 22044* 3081 PRO604K 024000 10030665 RETRY4 NO0
336 tSAPOO0., 3S-Z9 O43TIJCI. 00231400* 20142 3084 PR0604K 0240*0 RETRY 040
339 ISAPO82-14-1S-42 4ISTRJC. 444402143 Z2016t 3401 P30604 024000 CON4'?04 NO0
343 lSAP002,i4,i6-ao I3TPJCL M44334120 00162 3004 P006244K 024000 1E3665 COO4TTEO1 No0
344 t5AP0*I, .J6 40 41*4OJCL 44440534EWR 2"0162 3084 P30604K 0200 1EE3066S OCT33 N40
342 I5AFP8021411602 MSTOJCL. 444420140 20462 3031 P3OGCIK 024000 RETRY No0
343 ISAP0a024'16-0. 141L321 34402444( 220462 3004 ROUTSVC 032000 2CPABSK6 RETRY N40
244 IS3050116:04 NET 4.340 2262 30 061K 000 TPCS 04301 40

34 000246o oojt .sWopo 2:0ibz 3084 1300214K 024000 1CC036£3 COCT3R NO
34S lsAPR8'2l44:4619 04S3414L MI.410(2 20t4 3004 P3OGCHK OC10DO 2(0103463 RETRY No
346 ISAPPSZ:14:W609 KOSTrJCL fi.4050100* 220460 3004 P303244K 024000 1(E0665 RE4TRYO4 No
340 40441002,14.1609 412T0J21 4444334(0 20462 3004 P006244K 024000 IEE30668 C04413C34 No
348 IOAFR82114,44s14 303JC 146O34439 23162 3001 P300204K £01000 IEES1166 C01433(4 040

332 ISAPR32d14446I r STPJCL MIIV'311 20462 3081 PR00C44K 024200 OCTR3 NO0
331 I5AFR&2.14316:10 44STRJCL NblOSUERR0 020462 3004 PROGC44K 024000 OCTR3 040

*332 I5AP302I4416-1 030363(3 H41'0IUCO 22016Z 3064 P30604K £60000 1(232303 20443304 to0
S33 fSAP16214,.4141?01 1r 44442014(0 22042 3004 P306244K £00000 201411(34 NO0

Figure 1: Sample of software errors

4. BUILDING THE DATA BASE

An objective of this project was to make data management as automatic as

possible so that it is unnecessary to know the particulars of operating

systems, software monitors, record formats, and the like. The Statisti-

cal Analysis System (hereafter called SAS) ESAS 79J provided, in addi-

tion to its procedures for statistical analysis, a rich environment for

data handling. Initially, the raw data set (which is in hexadecimal

code) was compacted in order to extract the relevant information, and to

provide explanations for hexadecimal codes. Then, the records believed

to be repeated occurrences of the same problem (referred to as error

re-occurrence) were clustered. The result of this manipulation was a

data set ready to be fed into statistical analysis programs.

........
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4.1 PROCESSING THE SOFTWARE ERROR DATA

A collection of SAS programs performs the following steps:

(i) Select, Decode and ClassifX: The raw LOGREC data includes CPU,

channel, and device errors for all equipment in the installation. Only

the software records on the two IBM 3081's were selected for this analy-

sis. In each software record there are a number of bits describing the

type of error, its severity, and the result of hardware and software

attempts to recover from the problem. The general software error status

indicators provided by the harduare and software are TYPE (of detec-

tion), EVENT (causing the detection) and SYMPTOM (code or symptom of the

error).

(ii) Sort BE Processor and Time: To facilitate clustering in the next

step it was necessary to sort the data by CPU id (serial number) and

time of error within CPU id.

(iii) Cluster: Clustering of recurrent errors was performed for two

reasons:

1. to obtain error distributions and statistics unbiased by error

re-occurrence.

2. to measure the extent of the re-occurrence phenomenon.

Figure 1 contains an example of a recursive error. Consider observa-

tions 329 through 331: the problem coded 0CI (an operation code excep-

tion) occurred while a task of the supervisor program MSTRJCL was exe-

cuting. This error was detected by the hardware, and generated a

The IBM names for these fields are [IBM 79): TYPE - NDRTYP; EVENT -

SDWERRA; SYMPTOM - SOWACMPC.

k . . .. . . | - III , " --- . ....... J4



program check. The routines which handled the problem were unable to

recover, and the task affected by the error was terminated. Sometime

later the problem re-occurred (obs. 336 - 342, 345 - 348, 350 - 351,

etc).

The example shows that an error cannot always be isolated in a single

step. The programmer or the operator might be unable to diagnose the

problem, and simply decide to rerun the program. Error recurrence might

also be due to an error that does not cause the termination of the pro-

gram. In this case, no action is taken by the system, and the problem

might recur later (for example, if it is a pattern sensitive error).

Devising a suitable clustering policy was an important step of this

work. A careful analysis of the data and extensive experimentation was

necessary.

The clustering algorithm analyses the data and merges observations

that satisfy either one of the following conditions:

1. The observations have exactly the same time stamp. This was done

to cluster records generated by the recurrence of the same error.

Note that more than one record can be generated for the same

incident if more than one recovery routine is specified for the

process. This is called percolation [IBM 81].

2. The errors recur within a short time interval of each other, and

have the same SYMPTOM code. This was done to capture repetitions

of the same error. The determination of time interval to be used

involved a careful analysis of the data and some experimentation.

Finally, a time interval of 15 minutes was found to be most

appropriate.
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The clustering algorithm employs three steps. The unclustered data

set is first sorted by time and CPU id. The observations that satisfy

the conditions above are merged into a single record. These steps, how-

ever, fail to merge observations which satisfy conditions 1 and 2. but

are interleaved with records referring to an apparently different prob-

lem (different SYMPTOM code). An example of this was illustrated in

Fig. 1. To get rid of this problem, observations that satisfy condition

2, but are not consecutive, are also merged into a single cluster.

The result is a set of clustered errors. Associated with each clus-

ter is information consisting of error classifications, number of points

in the cluster (NPOINTS), time of the first (FIRST) and last (LAST)

error in the cluster, the length of the cluster (SPAN = LAST - FIRST),

the time between clustered errors (TBE), and a variety of status data

provided by the hardware and operating system.

Some interesting things can be learned from a cursory analysis of the

clusters derived as stated. Summary statistics for the number of points

in a cluster (NPOINTS) and time spanned by a cluster (SPAN) are shown

below in Figure 2. Figure 2 shows clearly that the clustering algorithm

is having an effect by gathering long bursts of errors into a few large

clusters, indicated by the maximum 340 points and 4497 seconds time

. . .. _ _ _ _ _ _ _ _.



original Errors: 7,197 Clustered Errors: 1562

NPOINTS SPAN (seconds)

Mean 4.60 46.8
Median 1 0.0

90th Percentile 6 51.1
Minimum 1 0.0

Maximum 340 4497.0

Percentage bar charts

80

40 I

.. 60;

30 ..

40~

20 ..

200

10~ . -

1 2. 5- 10 50 10 
1 0010

spn. I fc .- onl 19%* ofteosratoscutr oe ta w

software records, and only 5%. cluster more than 10 records. Large clus-

ters (more than 100 records) account for just 0.7%/. As far as the time

length of the incident is concerned, about 82% of the incidents last

less than 5 seconds, 8% last more than 100 seconds, and less than 1%
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have a time length greater than 1000 seconds. The table also shows that

lone errors predominate, with median cluster size of one and time span

of zero, showing that the clustering algorithm is not artificially forc-

ing them together. The accompanying bar charts also show this behavior.

Clustering is important in error analysis to avoid biasing the results

with repeated errors from the same failing component.

5. BASIC STATISTICS

This section presents a preliminary analysis of the data. The time

period has been divided in two parts:

1. EARLY period: from March 1982 through Imy 1982.

2. LATE period: from June 1982 through April 1983.

The reason for this is that the system configuration was changed in June

1982, and a corresponding change was noticed in the error data. In the

EARLY period only one CPU was active, while in the LATE period the sys-

tem load was shared by two CPUs.

Initially two charts were generated. The chart in Fig. 3 gives the

number of clustered software records for each month. During the first

three months (from March to May 1982) MVS went into production on a 3081

CPU, which processed the workload previously supported by two IBM 3033

CPUs. The number of terminals managed by a single CPU almost doubled.

Even though this workload was compatible with the new system specifica-

tions, a noticeably large number of problems occurred on the system. In

June 1982, a second 3081 was added. The number of reported errors was

considerably lower after June.

& . . . i I I . . .I m a ,. .. |". -
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Figure 3: Frequency plot of software errors by month

Figure 4 shows a histogram of the percentage of software errors by

the hour of day. The histogram has been obtained by averaging the daily

observations over the entire period of study. This chart appears to

follow rather closely the typical interactive load at CIT. It also com-

pares quite favorably with a similar plot of software failures. obtained

in a preceding study of the VM/370 system [Rossetti 823, which showed a

strong relationship between software failures and interactive workload.

Table 1 provides more detailed statistics for the system. The table

gives the mean, standard deviation, maximum and minimum value for the
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time between clustered errors (TBE). Note the dramatic improvement in

the mean time between errors, between the EARLY and LATE periods.

Table 2 provides an analysis of the various error detection mecha-

nisms. It is found that software was the main detection mechanism

(53%), followed by hardware (32%).

The next two sections investigate the nature of the errors and their

impact on the system. Section 6 provides statistics on error categories

and on recovery actions taken by the system. Section 7 relates these

errors to the job in execution at the time of the error.

TABLE 2

Type of error detection

EARLY LATE COMBINED

TYPE Freq. F Freq. % X

S/l Detected 391 56.2 438 50.6 53.1

H/W Detected 192 27.6 315 36.4 32.5

Lost Record 110 15.8 112 12.9 14.2

Operator Detected 2 0.3 1 0.1 0.2

, _
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6. ANALYSIS OF THE DATA

This section investigates the nature of the errors and how they are han-

dled by the system. In particular, the following questions are consid-

ered:

1. What are the most common error categories?

2. How good is the system at recovering from different types of

errors?

3. What is the impact of errors on the system?

Six error categories were defined. To each category, a measure of its

severity was ascribed, and the frequency of its occurrence was deter-

mined. Finally, for each category the success or failure of the recov-

ery process was assessed.

6.1 ERROR CLASSIFICATION

In common with other analyses of this type, the error SYMPTOM codes pro-

vided by the system were grouped into classes of similar problems. The

error classes were chosen by consulting with the CIT staff to determine

commonly encountered problems. In addition, other studies of this

nature were also consulted (e.g., [Thayer 78), [Endres 75], [Rossetti

82)). Finally, it was important to make sure that each error category

had a statistically significant number of errors in it.

Six classes of errors were defined:

1. Control: indicates the invalid use of control statements and

invalid supervisor calls.

2. 1/0 and data management: indicates a problem occurred during I/0

management or during the creation and processing of data sets.
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3. Storage management: indicates an error in the storage alloca-

tion/de-allocation process or in virtual memory mapping.

4. Storage exceptions: indicates addressing of non-existent or

inaccessible memory locations.

5.' Programming exceptions: indicates a program error other than a

storage exception.

6. Deadlocks: indicates a system or operator detected endless loop,

endless wait state or violation of system or user defined time

limits.

Data tagged "LOSTRECS" (Lost Records) were purged from the data set.

These accounted for 15% of the total. In addition, 1.3% of the records

had invalid or missing SYMPTOM codes and were also purged.

The next subsection discusses the error data and determines the

severity of each error category. The effect of the recovery process is

subsequently considered. Where significant, the two periods of study

are separately analysed so as to determine the differences in error

behaviour between employing one or two CPU's.

6.2 ERRO.R STATIICSL

There are significant differences in the error distributions between the

two periods of study. As noted earlier the time between errors and the

error frequency was considerably higher in the EARLY period (one over-

loaded CPU) than in the LATE period (two CPU's).

Table 3 gives the percentage distribution of the errors during the

two analysed periods. On the average, the two major error categories

are storage exceptions (26%11) and storage management (28%"). Storage



18

problems decreased in absolute terms but not in percentage terms.

Monthly plots for these and other important error categories appear in

the Appendix.

TABLE 3

Distribution of error categories during the twio periods

EARLY LATE COMBINED

Error type Freq. %Freq. X %

Storage management 215 36.7 159 21.1 27.9

Storage exceptions 115 19.6 229 30.4 25.7

Deadlocks 77 13.1 207 27.5 21.2

1/0 and data management 112 19.1 43 5.7 11.6

Programming exceptions 41 7.0 62 8.2 7.7

Control 16 2.7 47 6.2 4.7

Invalid 10 1.7 7 0.9 1.3

ALL 586 100.0 754 100.0 100.0

*Note that "LOSTRECS" have been purged from this data set.

Recall that a major feature of the MVS operating system is the multi-

ple virtual storage organisation. Storage management is a high volume

activity and is critical to the proper operation of the system. One

might therefore expect its contribution to errors to be siginificant.

Thus, even thriugh the absolute number of storage problems goes down, the
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fractional contribution remains high. Another reason for such a large

percentage of storage problems under increased workload was due to mish-

andling of hardware failures. The error detection mechanism on MVS is

not always able to diagnose software problems resulting from a hardware

failure. z

It can be seen from the table that resource management (control, I/0

and data management, and storage management) errors have significantly

decreased in LATE period, both in absolute and percentage (58% vs. 33%)

terms. The reduction in resource management problems in the EARLY

period is believed to be related to the reduction in workload per CPU

resulting from the introduction of the second CPU. This is also sub-

stantiated by the results, on the relationship between system activity

and software failures, reported in [Rossetti 82]. A possible explana-

tion is as follows: when the number of jobsteps handled by a single CPU

increases, the virtual and real storage management activity correspond-

ingly increases. A typical problem that occurs under these circumstan-

ces is in synchronization between routines, handling common data or con-

trol blocks. Examples of control blocks are the descriptors of program

address spaces. With increased levels of interactive loading, complex

states can occur, for which the integrity and consistency of such con-

trol blocks are not guaranteed, and a failure can occur.

It is also observed that deadlocks and exceptions increased in the

second period in percentage terms. In absolute values deadlocks and

exceptions do not exhibit a substantial difference between the two peri-

ods. These are in fact problems related to the program itself and not

W We believe this problem of hardware/software interface needs to be

studied in detail and will be the subject of another paper.
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to the complexity of the workload. The Appendix provides plots for var-

ious error categories on a monthly basis.

6.3 ANALYSIS OF RECOVERY MANAGEMENT

The question addressed in this section is to determine which types of

errors the system is able to handle, and how. The recovery process on

MVS is intended to isolate an error in order to preserve the system from

damage. Functional recovery routines (FRR's) are provided for important

system functions [Auslander 81]. Thus we expect that, the more severe

the problem, as far as the system resources and control structures are

concerned, the more likely it is that a recovery routine is provided.

Recovery of a program, e.g.. the correction of the error is possible

only under certain circumstances. A frequent example is the occurrence

of an unpredicted state. In this case, re-establishing a suitable envi-

ronment and issuing a retry can get rid of the problem. In other cases

the system will try to recover by terminating the task or even the job

in progress.

In order to evaluate the effectiveness of recovery management on MVS,

we commenced by investigating when recovery routines are specified and

why. Table 4 shows that recovery routines were provided for nearly 70%

of the reported problems. The percentage is more than 85% for deadlocks

and for storage and data management. For storage exceptions however

this percentage drops to 35.2%.

1 ,
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TABLE 4

Provision of recovery routines by error type

Error type Frequency Percent

1/0 and data management 142 91.6

Storage management 323 86.4

Deadlocks 244 85.9

Control 41 65.1

Programming exceptions 48 46.6

Storage exceptions 121 35.2

ALL 933 69.6

Table 5 provides an analysis of system recovery management. Overall,

the percentage of successful retries is 36% of all errors. Task tern'-

nations account for nearly 52% of all errors and job terminations for

12%. The percentage of retry is highest (65%) for storage management

errors.* Exceptions lead frequently to a task termination, even though

this does not imply termination of the job. beadlocks result in a sub-

stantially large number of job and task terminations (94%. combined) and

only 6% retries. A program that exceeds its timing constraints or that

which indefinitely holds system resources is almost always terminated.

In fact, further processing could seriously damage the system.

SThis seems to indicate that such problems are often due to the occur-
rence of a particular, unpredicted state. In this case, a simple
retry can be successful.
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TABLE 5

Effectiveness of the recovery by error type

Error Type JOBTERM TASKTERM RETRY

Storage management 0.3 34.5 65.2

Control 0.0 42.9 57.1

I/0 and data management 1.3 55.5 43.2

Storage exception 0.6 73.8 25.6

Programming exception 0.0 83.5 16.5

Deadlocks 55.3 38.7 6.0

All 12.2 51.9 35.9

Job or task terminations are potentially severe problems. The sever-

ity of the problem is best determined by what the system was doing at

the time of the error. Thus, in order to truly evaluate the effective-

ness of system recovery management, it is important to determine the

type and criticality of- the job in control at the time of the error.

The following section analyses the type of job affected by a reported

error.
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7. RELATING ERROR TO SYSTEM FUNCTION

This section relates the errors and the result of the recovery process

with the programs affected by the error. It is obvious that the termi-

nation of a job that performs a critical system function has a much more

severe impact on the system than a user or production job. In order to

understand this problem the following analysis was performed in close

cooperation with the CIT systems management staff.

1. Job Categories: Using the job name (at error occurrence) pro-

vided by the system, four job categories were defined, viz.

Supervisor (MVS) related jobs, Interactive jobs, Testing jobs,

and User/Production jobs.

2. Job Functions: These categories were further divided in three

groups of job functions: Critical (for system survival), Essen-

tial (would degrade but not crash the system) and Non-Essential

(to system survival). Most of the MVS and interactive jobs fell

in the critical group.

Interactive and Supervisor jobs are each involved in nearly 17% of

all errors. User and production account for 37% of the problems; test-

ing jobs occur in 12% of the cases. No job names could be attached to

nearly 22% of the reported errors (unclassified).4 Detailed tabulations

are given in the Appendix. It was noted that error involvement of MVS

and interactive jobs fell from 53% in the EARLY period to around 18% in

the LATE period. This compares favourably with the reduction in

resource management problems with the introduction of the second CPU.

4 In these cases the job name field was missing or the error was
reported by a functional recovery routine, and the name of the source
problem program was not available or the name of the job could not be
recognised.

-- W.
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The error categories were found to be uniformly distributed over both

the job categories and the job functions (see Appendix for tables). The

exceptions were "deadlocks", which mainly occurred on non-essential jobs

(84%) and 1/0 and data management which occurred mainly on critical jobs

(77%). Table 6 evaluates the effectiveness of the recovery routines in

dealing with critical, essential and non-essential jobs. Retries

occured on 43% of errors involving critical jobs and for 68% on essen-

tial jobs. The worst figure for job terminations was on non-essential

jobs (23%).

Importantly, in over 50% of the cases where system critical jobs are

involved, task ter-mination results. The task is a module of the criti-

cal job and usually system termination (recall that this is defined as a

failure) results. Similar, though slightly improved figures are found

for essential jobs. This points toward an inadequacy in recovery man-

agement, since one would like better recovery and far less task termina-

tions when critical and essential jobs are involved.

Table 6 also shows that recovery routines were specified in about

65% of the errors where critical jobs were involved. In interpreting

this table recall that recovery is possible even w~hen no recovery rou-

tine is provided through the Recovery Termination Manager. The percent-

age of failures in cases where recovery routines were specified is 44%

versus 80% when no recovery routine was specified. This appears to show

the FRR's and ESTAE's are having an effect in improving the system fault

tolerance but there is still considerable scope for improvement. For

essential jobs (where we expect degradation in service but not necessar-

ily a system failure) the percentage of failures where recovery routines
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TABLE 6

Recovery management

Job Criticality and Type of Recovery

RETRY TASKTERtI JOSTERII Frequency

Critical 43.3 53.0 3.7 402

Essential 68.6 23.5 7.8 51

Mon-Essential 24.8 51.9 23.3 592

Effectiveness of Recovery Routines

Recovery Failures Failures
Routines (Recovery Routines (Recovery Routines
Provided Provided) Not Provided)

x4 %%

Critical 65.7 44.3 80.4

Essential 78.4 20.0 72.7

are specified drops to nearly 202 versus 72X where no recovery routines

are specified. Thus the recovery routines are doing a much better job

in dealing with essential than with critical jobs. In fact one would

like these figures to be reversed.
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TABLE 7

Effect of recovery routines for critical jobs

Error Type Freq. Rcvy Routine Failures** Failures**
Provided (Rcvy Routine (Rcvy Routine

Provided) Not Provideed

Control 22 63.6 21.4 100.0*

Deadlocks 29 82.8 100.0 100.0

I/O and data 74 82.4 90.2 7.7
management

Storage 161 79.5 7.8 81.8
management

Storage 82 18.3 46.7 92.5
exceptions

Programming 31 64.5 80.0 63.6

exceptions

All 402 65.7 44.3 80.4

The number of observations was not statistically significant

((=4)
** Failure: Job or task termination on a critical job

Table 7 relates the provision of recovery routines to the specified

error categories when critical jobs are involved (i.e., potentially

serious system problems). It is found that recovery routines are most

effective in dealing with storage management problems (an important fea-

ture of MVS). When no recovery routines are provided, the probability

of a storage management failure is high (81.). The recovery routines
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are weakest in dealing with deadlocks, I/0 and data management5 probiems

and programming exceptions. Thus it would appear that these are the

particularly vulnerable areas of the system where further attention

could be directed. In order to quantify the above figures we define and

evaluate measures of fault tolerance and reliability in the following

section.

8. MEASURES OF SYSTEM FAULT TOLERANCE AND RELIABILITY

This section evaluates the following measures using the collected data.

1. The mean time for error handling (MTEH) is defined as:

I SPAN(i)
MTEH = (1)

N

where:
SPAN(i) Length of Cluster i

N Number of Clustered Errors

2. The average (MFR) failure rate:

Number of Failures
MFR (2)

Time Period of Measurement

where:
Number of Failures = No. of job/task terminationsG

of critical jobs

s Notice that, for I/O and data management, we have a strange situation

in that the system fails over 90% of the time when recovery routines
were provided versus only 7.7% when no recovery routine was provided.
This was caused by a particular bug. The RTM was able to successfully
retry and no recovery routine was involved. These retries have con-

siderably biased the statistics for this error category.

6

Recall that the termination of a critical job or its task (module)
almost always results in system failure and is defined as such.
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3. The software fault tolerance (FT) (i.e., the probability of

recovery given that a software error has occurred):

Number of Failures
FT =l- (3)

Total Number of Errors

To obtain more detailed information, these measures were evaluated for

each error category and for the two periods (where significant). The

results are shown in Tables 8, 9 and 10.

Table 8 on MTEH shows how quickly the system is able to handle an

error. The result of the error handling process could be a successful

recovery or a termination (failure). The generally larger handling

times for critical jobs reflect the fact that not only is the system

attempting to isolate the error but also is trying to avoid termination.

Very long error handling times occur on storage exceptions (large clus-

ters). It was found that many of these errors were due to hardware

problems. Refer to the Appendix for tabulations.

Table 9 calculates the failure rate for each error category. The

average system failure rate was found to be 11.1 per 1000 hours in the

LATE period. Looking at the failure rate figures we notice a general

improvement between the two periods over all error categories. In the

EARLY period a high failure rate exists for management and storage prob-

lems. In the LATE period storage exceptions aopear to be the dominating

error category. In general the failure rate ranges between 1.2 and 3.4

per 1000 hours.

k -
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TABLE 8

Mean time for error handling (Seconds)

EARLY LATE COMBINED

Critical 38.0 46.2 40.4

Essential 4.8 4.2 4.6

Non-Essential 13.8 40.0 26.4

TABLE 9

Average failure rate (Failures/lO00 Hours)

Error type EARLY LATE

Control 2.2 0.8

Deadlocks 4.5 2.6

I/O and data management 21.0 1.1

Storage management 9.9 2.0

Storage exceptions 19.9 3.4

Programming exceptions 6.3 1.2

All 63.8 11.1

Table 10 presents the system fault tolerance under two conditions.

It shows how well the system handles all problems i.e., regardless of
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the type of job in control at the time of the error (all jobs). In

order to quantify how well the system recovery management handles seri-

ous system problems, the fault tolerance measure (FT) was evaluated,

given that a critical job was in control t thei time of the error. The

overal system fault tolerance to a software error is found to be 0.88.

The table shows that the system is weak in dealing with errors occurring

on critical jobs. This calculation was also performed for each error

category. It is seen that the system deals best with storage management

and control problems. It is at its weakest in dealing with deadlocks

and exceptions. The figure for I/O and data management is also rather

low. As expected the results match with the recovery management analy-

sis of the previous section.

TABLE 10

Fault tolerance

Error Type All Jobs Critical Jobs

Control 0.80 0.50

Deadlocks 0.90 0.00

1/0 and data management 0.42 0.24

Storage management 0.89 0.77

Storage exceptions 0.63 0.16

Programming exceptions 0.69 0.26

All 0.88 0.43

4 J " ' . . . . . . m . ... .. . . ~ .. .. . 1 II .. . . .. -. a
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9. CONCLUSIONS

It has been the purpose of this paper to present an analysis of software

related errors on the MVS operating system at CIT. Storage management

and storage exceptions were found to be the major error categories.

This was related to the criticality of the storage management activity

on the MVS system. The decreasing contribution, of these and other cat-

egories of errors, was found to be related to the changes to the system

during the analysed periods, especially the reduction of workload per

CPU through the addition of a second CPU. The occurrence of software

errors closely matched the interactive workload on the system. This

compares quite favourably with the results on VM/370 reported in

[Rossetti 823.

Data on the recovery process showed that recovery routines are pro-

vided on MVS mainly for those problems which affect some system

resource. The fact that very few large error clusters occur shows that

the recovery process is reasonably successful in isolating a problem.

The large clusters that do occur are mainly due to the fact that the

e-ror detection on MVS is not always able to diagnose software problems

resulting from a hardware failure.

The effectiveness of error recovery was measured with regard to its

intended purpose, i.e., to avoid system damage. The error severity (and

the effectiveness of recovery management) was evaluated by relating the

error occurrence to the type of program affected by the error. Data on

error recovery showed that the system fault tolerance almost doubles

when recovery routines are provided, in comparison with the case where

no recovery routines are available. The system recovery routines are

:-i -bnMI~ u n u ~ r
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most effective in handling storage management problems (an important

feature of MVS). However, even when recovery routines are provided,

there is almost a 50% chance of system failure when critical system jobs

are involved. Thus there is still considerable scope for improvement.

Deadlocks, I/O and data management and exceptions are the main problem

areas. Deadlocks in MVS, it is felt, are best only be dealt with

through improved error detection. Here, both pre-checking and post-

checking of data structures could be a possibility. In the other cases

more robust recovery routines and better handling of hardware errors

could produce a substantial improvement. It should be noted however

that some caution is advised in applying the statistical figures calcu-

lated here to other situations.

Importantly, the results obtained in this paper demonstrate that it

is possible to derive quantitative measures for system fault tolerance

and recovery management. This information can be very valuable in pin-

pointing major problem areas where further work, oriented toward

enhanced recovery management, can be directed. It is suggested that

other systems be measured and analysed in this manner so that a Aide

spectrum of practical results on operational software are available.
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TABLES AND PLOTS
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TABLE 11

Job classification

EARLY LATE COMBINED

Job Type rreq. X Freq. % Freq. X

Interactive System 189 32.3 49 6.5 238 17.7

MVS System programs 124 21.2 91 12.1 215 16.0

System Testing 37 6.3 128 17.0 165 12.3

User and Production 121 20.7 306 40.6 427 31.9

Unclass/Invalid 115 19.7 1tO 23.9 295 22.0

TABLE 12

Job functions and type of error

Error Type Critical Essential Non-Essential

Freq. . Freq. % Freq.

Control 22 40.7 7 13.0 25 46.3

Deadlocks 29 10.6 10 3.6 236 85.3

I/O and
data management 74 77.1 1 1.0 21 21.9

Storage management 161 46.8 4 1.2 179 52.0

Storage exceptions 82 43.6 13 6.9 93 49.5

Programming exceptions 31 42.5 5 6.9 37 50.7

All 402 39.5 51 4.9 592 56.7

:Ki

, 4 ; :
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TABLE 13

Mlean time for error handling (Seconds)

Error Type Critical Essential Non-Essential
EARLY LATE EARLY LATE EARLY LATE

Control 16.3 0.0 7.5 3.8* No Obs. 127.6

Deadlocks 0.6 39.7 0.0* 0.0* 20.6 21.9

1/0 and data
management 17.5 17.5 0.0* No Obs. 53.7 31.0

Storage
management 29.2 35.4 40.3* 0.0* 1.9 42.8

Storage
exceptions 106.9 108.6 0.0? 4.6 0.8 62.2

Programming
exceptions 15.5 2.0 0.0* 13.0* 0.0* 83.6

All 38.0 46.2 4.8 4.2 13.8 50.6

*The number of observations was not statistically significant
((=4)

. .........
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TABLE 14

Fault tolerance

Error Type Critical Essential

EARLY TOTAL EARLY TOTAL

Control 0.54 0.45 0.50* 1.00*

Deadlocks 0.00 0.00 0.25 0.25

1/O and data management 0.08 0.64 0.00* 0.00*

Storage management 0.84 0.35 1.00* 1.00*

Storage exceptions 0.12 0.22 0.75 0.78

Programming exceptions 0.33 0.10 0.67* 0.50*

The number of observations was not statistically significant

((=4)
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Appendix B

MYS ERROR DETECTION AND RECOVERY PROCESSING

B.1 ERROR DETECTION

The supervisor in MVS offers many services to detect and process abnor-

mal conditions during system execution.

1. The hardware detects conditions such as memory violations, pro-

gram errors (arithmetic exceptions, invalid operation codes) and

addressing errors.

2. The software also provides detection of software problems.

The data management And supervisor routines ensure that valid

data are processed and non-conflicting requests are made. Exam-

ples are the incorrect specification of a parameter in a control

structure or in a system macro, or a supervisor call issued by an

unauthorized program.

The. installation might improve the system error detection

capability by means of a software facility called Resource Access

Control Facility (RACF). The RACF is used to build detailed

'profiles' of system software modules. These profiles are

defined in order to inspect the correct usage of system

resources.

The ue might also define his own detection mechanisms by

means of the Set Program Interruption Element (SPIE) macro. This

macro instruction detects programmer defined exceptions like

& _ _ _o
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using an incorrect address or attempting to execute privileged

instructions.

3. The operator might detect some evident error condition and decide

to cancel or restart the job. For example, the operator can

detect loop conditions or endless wait states.

A software record also contains the information about the event

(EVENT) that caused the record to be generated, and a 12 bit symptom

code (SYMPTOM) describing the reason f or the program abnormal termina-

tion. This codes are issued by the system or by the problem program

that used an ABEND macro instruction. The system and user completion

codes appear together in the SYMPTOM field. User codes are meaningful

only for specific applications.

Table 15 describe the values assumed by the variable EVENT. Table 16

gives some example of common system SYMPTOM codes encountered in this

study. The detection mechanism and the action taken by the system are

also described. More than 500 different SYMPTOM codes are issued by the

system for a problem program.
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TABLE 15

Event that caused program termination

Variable EVENT

Values Meaning

MACHECK A hardware event caused a machine check that
could not handle the problem

PROGCHECK A program check interrupt occurred due to the
detection of some exception or to the violation
of some memory protection mechanism

TRSFAIL A translation error, e.g., an error occurred
during the storage allocation process

RESTART The operator pressed the restart key

ROUTABT A system service routine detected an invalid SVC
and issued an abnormal termination of the
program (ABEND)

ROUTSVC A system routine issued an invalid supervisor
call (SVC)

PROGABT The program itself requested the ABEND

SYSABT The system detected a problem and forced a
program ABEND
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TABLE 16

Examples of ABEND reason codes

Hex code Explanation System action

05A A service routine that The program that called
handles real storage the service routine or
deallocation received the routine abnormally
an invalid address terminates

071 The operator determined The operator pressed the
that the program was in RESTART key
a loop or endless wait
state

OCl Operation exception: an A program interruption
operation code is not occurred; the task is
assigned terminated if no routine

had been specified to
handle the interruption

020 The error occurred during The task is terminated
the creation of a data set if no routine has been
due to the incorrect speci- specified for the
fication of some data para- problem program
meter

B.2 RECOVERY PROCESSING

Whenever a program is abnormally interrupted due to the detection of an

error, the Supervisor gets control. If the problem is such that a fur-

ther processing could degrade the system or destroy data, the Supervisor

gives control to the Recovery Termination Manager (RTM). If a recovery

routine is available for the problem program, RTM gives control to this

routine before processing the program termination.

Recovery is designed as a means by which the system can prevent total

loss. The purpose of a recovery routine is to free the resouces kept by
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the failing program (if any), to locate the error and to request either

for a continuation of the termination process or for a retry. Recovery

routines are generally provided to cover all tIVS functions [Auslander

81]. It is how~ever the responsibility of the installation or of the

user to write recovery routine for other programs.

More than one recovery routine can be specified for the same program;

if the latest recovery routine asks for a termination of the program,

the RTM can give control to another recovery routine (if provided).

This process is called 'percolation'.

The percolation process ends if either a routine issues a valid retry

request, or no more routines are available. In the latter case, the

program and its related subtasks are terminated. The termination of a

program might imply the termination of jobstep. If a valid retry is

requested, a retry routine restore a valid status, using the information

supplied by the recovery routine(s), and can give control to the pro-

gram. In order for a retry to be valid the system should verify that

there is no risk of recurrence of the error to the same recovery rou-

tine, and that the retry address is properly specified. Figure 8 illus-

trates the steps in the recovery process.

Traces of the recovery process are recorded on LOGREC. This includes

the name and the type of the recovery routine which handled the problem

(RECHArIE), the result (RESULT) of the recovery process and the impact

of the error on the related jobstep (JOBTERM). A description of these

fields is given in Table 17. Other data collected during the recovery

process, includes detailed program status information such as the con-

tents of registers and the program address space identifier. This can

be helpful in error diagnosis.
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ABEND
CONTROL

RECOVERY

TERMINATION
PROGRAM MANAGER

(RTM)

RETRY RECOVERY TERMINATION
ROUTINES ROUTINES ROUTINES

Figure 8: Software handling of software errors on MVS

I

TABLE 17

Data on the recovery process

Variable name Values Meaning

RECHAME 8 character Name of the recovery
name routine which handled

the problem

RESULT RETRY The recovey routine
decide that a retry
might be successful

CONTTERM The recovery routine
asks to continue with
termination (this might
imply percolation)

JOBTERM YES/NO If JOBTERM=YES the entire
jobstep has to be
terminated



46

During the recovery process the system basically attempts to maintain

operation despite an error. It is possible that the recovery process

itself encounters the same error. In this case, there exists the risk

of recursive recovery processes, or the generation of bad data. How-

ever, such occurences can be detected by analyzing the SDWA field into

LOGREC. If the jobname for example is 'NOHE-FRR', this indicates that

the record is generated by a functional recovery routine during a recov-

ery attempt. Finally, if the recording process was also affected by an

error, a LOSTREC value appears in the TYPE field.

4 A • ___ ____ ____-_ -- -.----
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